Machine Learning in Astronomy

Szymon J. Nakoneczny - 17.03.2021

Plan

- 1. Introduction to machine learning
- 2. Software
- 3. Examples in astronomy

Where are we?

source: https://www.datasciencecentral.com/profiles/blogs/artificial-intelligence-vs-machine-learning-vs-deep-learning

(un)supervised

Supervised learning

source: https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai

Perceptron

source: https://towardsdatascience.com/introducing-deep-learning-and-neural-networks-deep-learning-for-rookies-1-bd68f9cf5883

Fully connected layer

source: http://cs231n.github.io/convolutional-networks/

Gradient descent

Hypothesis:	$h_{\theta}(x) = \theta_0 + \theta_1 x$
Parameters:	$ heta_0, heta_1$
Cost Function:	$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$
Goal:	$\underset{\theta_{0},\theta_{1}}{\operatorname{minimize}} J(\theta_{0},\theta_{1})$

Clustering

source: http://scikit-learn.org/stable/modules/clustering.html

source: http://www.sthda.com/english/wiki/print.php?id=246

Manifold learning

source: http://scikit-learn.org/stable/modules/manifold.html

T-SNE (2008)

t-distributed Stochastic Neighbour Embedding

Visualization of high-dimensional data

Deep learning

Each layer learns something

sources: https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/, https://www.clarifai.com/technology

Recent rise of deep learning

ILSVRC top-5 error on ImageNet

source: https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai

Different problems

Classification

Classification + Localization

Object Detection

Instance Segmentation

Natural language object retrieval

a scene with three people query='man far right' query='left guy' query=' cyclist' query='left guy' query=' cyclist' query=' cyclist'

https://arxiv.org/pdf/1511.04164.pdf

Figure 3. An example image in ReferIt dataset where objects are described based on other objects in the scene. When referring to one of the three "people" in the image, expressions based on both the object and the context are used to make the description discriminative. Our model can handle such object descriptions in context by incorporating these information into the recurrent neural network. In the images above, yellow boxes are ground truth and green boxes are correctly retrieved results by our model using highest scoring candidate from 100 EdgeBox proposals.

Semi-supervised representation learning - Word2Vec

Male-Female

Verb tense

Country-Capital

Google Translate model (2017)

source: https://blog.statsbot.co/deep-learning-achievements-4c563e034257

Reinforcement learning

Idea behind Reinforcement Learning

Reinforcement learning in games

Convolutional Agent

Training RL models

source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_reinforcement_learning.html

Quake 3 Arena (2018)

Outdoor map overview

source: https://www.theverge.com/2018/7/4/17533898/deepmind-ai-agent-video-game-quake-iii-capture-the-flag

Deep or dumb?

Data leaks

Bias vs variance tradeoff

in machine learning

- Simpler model higher bias
- More complex model higher variance

Train vs inference / model testing

https://ui.adsabs.harvard.edu/abs/2 021arXiv210106010B/abstract

t-SNE projection of **KiDSxSDSS data**. *Left: r* magnitude, *right*: SDSS spectroscopic classification.

Why is it worth knowing?

- Multidisciplinary
- Perhaps leads to general AI in the next decades
- Useful in science
- Lack of ML oriented referees, bad ML papers in astronomy

Python data toolkit

Matplotlib visualizations

Scipy scientific computing

Seaborn

powered-up visualizations

Numpy vectors and matrices

Jupyter notebooks science oriented environment

Pandas working with data

Anaconda "One to rule them all"

Machine learning tools in Python

scikit-learn general purpose ML

NLTK natural language processing

Scikit image image processing

Librosa working with audio

OpenCV image processing **Deep learning libraries in Python**

Deep learning example

def make_model(input_shape, num_classes):
 inputs = keras.Input(shape=input_shape)
 # Image augmentation block

x = data_augmentation(inputs)

Entry block

- x = layers.experimental.preprocessing.Rescaling(1.0 / 255)(x)
- x = layers.Conv2D(32, 3, strides=2, padding="same")(x)
- x = layers.BatchNormalization()(x)
- x = layers.Activation("relu")(x)
- x = layers.Conv2D(64, 3, padding="same")(x)
- x = layers.BatchNormalization()(x)
- x = layers.Activation("relu")(x)

previous_block_activation = x # Set aside residual

for size in [128, 256, 512, 728]:

- x = layers.Activation("relu")(x)
- x = layers.SeparableConv2D(size, 3, padding="same")(x)
- x = layers.BatchNormalization()(x)
- x = layers.Activation("relu")(x)
- x = layers.SeparableConv2D(size, 3, padding="same")(x)
- x = layers.BatchNormalization()(x)
- x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

Project residual

residual = layers.Conv2D(size, 1, strides=2, padding="same")(
 previous_block_activation

x = layers.add([x, residual]) # Add back residual
previous_block_activation = x # Set aside next residual

- x = layers.SeparableConv2D(1024, 3, padding="same")(x)
- x = layers.BatchNormalization()(x)
- x = layers.Activation("relu")(x)
- x = layers.GlobalAveragePooling2D()(x)

```
if num_classes == 2:
    activation = "sigmoid"
    units = 1
```

else:

activation = "softmax"
units = num_classes

x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)
return keras.Model(inputs, outputs)

model = make_model(input_shape=image_size + (3,), num_classes=2)
keras.utils.plot_model(model, show_shapes=True)

Transfer learning

Classify ImageNet classes with ResNet50

from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

- x = image.img_to_array(img)
- x = np.expand_dims(x, axis=0)
- x = preprocess_input(x)

preds = model.predict(x)

decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker',

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-
EfficientNetB0	29 MB	15		5,330,571	-
EfficientNetB1	31 MB	-	-	7,856,239	-
EfficientNetB2	36 MB	-	-	9,177,569	-
EfficientNetB3	48 MB		-	12,320,535	-
EfficientNetB4	75 MB		-	19,466,823	-
EfficientNetB5	118 MB	-	-	30,562,527	-
EfficientNetB6	166 MB	-	-	43,265,143	-
EfficientNetB7	256 MB		-	66,658,687	-

Where to next?

1. Kaggle courses and playground competitions <u>https://www.kaggle.com/learn/overview</u>

2. Coursera

https://www.coursera.org/learn/machine-learning

Classification

https://ui.adsabs.harvard.edu/abs/2 021arXiv210106010B/abstract

t-SNE projection of **KiDSxSDSS data**. *Left: r* magnitude, *right*: SDSS spectroscopic classification.

Photometric redshifts

https://ui.adsabs.harvard.edu/abs/2 021arXiv210106010B/abstract

Supernovae variables

FIG. 1.— An example simulated DES type Ia supernova light curve (object ID 009571), at redshift 0.42, from the Supernova Photometric Classification Challenge (Kessler et al. 2010a,b). The photometric light curve is measured in the four DES griz filter bands, showing the rise in brightness after the explosion of the star and subsequent decay. The points and error bars are the data points, while the curves are from the best fitting SALT2 model (see Sec. 3).

https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf

Exoplanets

F1G. 3.— Light curve representations that we use as inputs to our neural network models. The "global view" is a fixed-length representation of the entire light curve, and the "local view" is a fixed-length representation of a window around the detected transit. (a) Strong planet candidate. (b) Long-period planet where the transit falls into just one bin in the global view. (c) Secondary eclipse that looks like a planet in the local view.

https://inspirehep.net/literature/1487487

Glitches in LIGO

Figure 2. Spectrograms of typical transient types found in the aLIGO Livingston ER7 data. They are generated using the Omega scan tool in LigoDV-Web [14], which matches the data to sine Gaussians. (a) A transient characterized by a tear drop shape in the spectrogram. (b) A "whistle" glitch that often has a long duration and occurs at high frequencies. (c) A hardware injection. (d) A transient type characterized by high frequency into and lower frequency features.

Figure 3. Examples of some of the most common transient types found in the Hanford ER7 data (a) A tear drop glitch. (b) Transients of this type have a large SNR and duration. They created significant drops in the detectors range. (c) A high frequency transient type. (d) A longer duration line occurring at the beginning of a number of data segments.

Anomalies

https://ui.adsabs.harvard.edu/abs/2 020arXiv201208082S/abstract

and shown in (c)-(e). We find (c) blue star-forming regions (dark blue stars), (d) extended galaxies with active regions (light blue diamonds), and (e) galaxy mergers (green triangles).

Thank you! Questions?